Array
Geri git   GençMekan > EĞİTİM | ÖĞRETİM > Bilgi Kaynağı > Matematik - Geometri


Polinomlar Konu Anlatım - Çözümlü Örnekler


Konuya Davet EdilenLeR

Yeni Konu aç Cevapla
 
LinkBack Seçenekler Stil
Alt 02-12-2007, 07:49 PM   #1 (permalink)
Kurucu

 
Hâdim - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Dec 2006
Bulunduğu yer: Başkent
Yaş: 30
Mesajlar: 33.506
Bahsedildi: 5 mesajda
Davet edildi: 3 konuda
Rep Durumu
Tecrübe Puanı: 2449
Rep Puanı: 83973
Rep Derecesi:
Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.Hâdim Çok ünlü.
Standart Polinomlar Konu Anlatım - Çözümlü Örnekler

P O L İ N O M


Polinomlarla İlgili Temel Kavramlar:

a0 a1 a2 ....an-1 an  R ve n  N olmak üzere P(x) = an xn + an-1 xn-1 + .... + a1 x + a0 şeklindeki ifadelere x değişkenine bağlı reel katsayılı n’inci dereceden bir polinom denir.

1. an xn an-1 xn-1 .... ak xk ..... ayx a0 ifadelerinin her birine P(x) polinomunun terimleri denir.
2. an an-1 .... ak .... ay a0 reel sayılarına polinomun terimlerinin katsayıları denir.
3. P(x) polinomunda anxn terimindeki en büyük n sayısına polinomun derecesi denir ve [P(x)]=n şeklinde gösterilir.
4. Derecesi en büyük olan anxn terimindeki an reel sayısına polinomun katsayısı a0 sabitine ise polinomun sabit terimi denir.
5. P(x) polinomu terimlerin azalan derecelerine göre
P(x) = anxn + an-1xn-1 + .... + a1x + a0 şeklinde veya P(x) polinomu terimlerin artan derecelerine göre
P(x) = a0 + a1x + a2x2 + .... + an-1xn-1 + anxn biçiminde sıralanır.
6. Katsayıları reel sayılardan oluşan polinoma “Reel Katsayılı Polinom” denir ve reel katsayılı polinomlar kümesi R[x] ile gösterilir.

Örnek:
P(x) = 2x5-3/n +xn-2 + 4 ifadesinin bir polinom olması için n  N kaç olmalıdır?

Çözüm:
5-3/n ifadesinin bir doğal sayı olması gerekir bunun için n yerine verilecek sayının 3’ün bölenleri olmalıdır.
3’ün bölenleri ise n = 1 n = 3 n = -1 n = -3 Ayrıca n-2  0 den n  2 olması gerekir. O halde bu iki şartı da gerçekleyen n = 3 sayısıdır. Buna göre P(x) polinomu
P(x) = 2x5-3/3 + x3-2 + 4
P(x) = 2x4 + x + 4 dür.

ÇOK DEĞİŞKENLİ POLİNOM

P(x y) = x3y2 – 2x4 y3 + xy + x – y + 1 şeklindeki polinomlara x ve y değişkenlerine bağlı reel katsayılı bir polinom denir.

Bu polinomların derecesi x ve y’nin dereceler toplamının en büyüğüdür.
der P(x y) = der P(x) + der P(y) dir.

Yukarıdaki iki değişkenli polinomun derecesi ikinci terimdeki x ve y’nin dereceler toplamıdır.
Der P(x y) = 4 + 3 = 7 dir.

Örnek
P(x y) = 2x2y4 – 3x3y5 + x2y3-y5 + 1 polinomunun derecesi kaçtır?

Çözüm:
2x2y4 teriminin derecesi 2 + 4 = 6
-3x3y5 teriminin derecesi 3 + 5 =8
x2y3 teriminin derecesi 2 + 3 = 5
-y5 teriminin derecesi 5
Yukarıda belirtilen en büyük dereceli terimin derecesi P(x y) polinomunun derecesidir. O halde der P(x y) = 8 dir.

Örnek
P(x) = x3 – 3x2 + 4x – 2 ise
P(2)= ? P(0) = ? P(1) = ?

Çözüm:
P(2) = 23 – 3.22 + 4.2 – 2
= 8 – 12 + 8 – 2 = 2 bulunur.
P(0) = 03 – 3.02 + 4.0 – 2 = - 2 bulunur.
P(1) = 13 – 3.12 + 4.1 – 2
= 1 – 3 + 4 – 2 = 0 bulunur.


SIFIR POLİNOMU

P(X) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 polinomunda
an = an-1 = ... = a1 = a0 = 0 ise; P(x) = 0xn + 0xn-1 + ... + 0x2 + 0x + 0 polinomuna sıfır polinomu denir.

Sıfır polinomu 0 ile gösterilir. Sıfır polinomunun derecesi belirsizdir.

Örnek
P(x) = (m + 3)x2 + (n – 5) x + 1 polinomunun sıfır polinomu olması için; m n ve t reel sayılarını belirtelim.

Çözüm
P(x) polinomunun sıfır polinomu olması için;
m + 3 = 0 n – 5 = 0 t = 0 ;
m = -3 n = 5 t = 0 olmalıdır.


SABİT POLİNOM

P(x) = anxn + an-1xn-1 + ... + a1x + a0 polinomunda an = an-1 = ... = a1 = 0 ve a0  0 ise; P(x) polinomuna sabit polinom denir.

0xn + 0xn-1 + ... + 0x + a0 sabit polinomu a0 ile gösterilir.
x0 = 1 olduğundan; a0 sabit polinomu a0x0 biçiminde yazılabilir. Buna göre sabit polinomun derecesi 0 dır.

Örnek P(x) = (a – 4)x2 + bx + 7 polinomunun sabit polinom olması için a ve b sayılarını belirtelim.

Çözüm
P(x) = A – 4)x2 + bx + 7 polinomunun sabit polinom olması için a – 4 = 0 ve b = 0 olmalıdır. Buna göre a = 4 ve b = 0 dır.

İKİ POLİNOM EŞİTLİĞİ

Dereceleri aynı ve aynı dereceli terimlerinin kat sayıları eşit olan iki polinoma eşit polinomlar denir.

n. dereceden
A(x) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 ve
B(x) = bnxn + bn-1xn-1 + ... + b2x2 + b1x + b0 polinomları için;
A(x) = B(x)  an = bn an-1 = bn-1 ... a2 = b2 a1 a0 = b0 dır.

Örnek
A(x) = 5x3 + (a + 1x2 + d
B(x) = (b - 1)x3 – 3x2 – (2c – 3) x + polinomları veriliyor. A(x) = B(x) olması için; a b c ve d yi bulalım.

Çözüm
A(x) = 5x3 + (a + 1)x2 + d = 5x3 + (a + 1)x2 + 0x + d
B(x) = (b – 1)x3 - 3x2 – (2c – 3)x + olduğundan;
A(x) = B(x)  5 = b – 1 a + 1 = -3 0 = -(2c – 3) d =
b = 6 a = -4 c = d = dir.


POLİNOM FONKSİYONLARI

P : R  R
x  P(x) = anxn + an-1xn-1 + ... + a1x + a0 fonksiyonuna polinom fonksiyonu denir.

P : R  R
x  P(x) = 5x3 + 2x2 – 3x + 1 ifadesi polinom fonksiyonudur.

Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz.

Çözüm
P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.

II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.

Örnek
P(x) polinomu için
P(x+2) = x3 – 2x2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.

Çözüm
P(x+2) = x3 - 2x2 + 4 eşitliğinde
H = x + 2  h –2 = x’i yerine yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.


POLİNOM KATSAYILAR TOPLAMI

P(x) = anxn + an-1xn-1 + ... + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + ... + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.

Örnek
P(x) = 2x4 + 5x3 – 3x2 + x – 1 polinomunun katsayıları toplamını bulunuz.

Çözüm
P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.

POLINOMLARDA İŞLEMLER

Polinomlarda Toplama İşlemi

A(x) = a4x4 + a3x3 + a2x2 + a1x + a0
B(x) = b3x3 + b2x2 + b1x + b0
Polinomları verilsin bu iki polinomu toplarken aynı dereceli terimler kendi arasında toplanarak iki polinomun toplamı elde edilir.
A(x) + B(x) = a4 x4 + ( a3 + b3 ) x3 + ( a2 + b2 ) x2 + ( a1 + b1 ) x + a0 + b0

Örnek
P(x) = x3 + 2x2 – 3x + 1 Q(x) = 3x2 + 3 x + 4 polinomlarının toplamı olan polinomu bulunuz.

Çözüm
P(x) + Q(x) = x3 + (2+3) x2 + (-3) + 3) x + 1 + 4
= x3 + 5x2 + (3-3) x + 5 dir.

Buna göre iki polinomun toplamı yine bir başka polinom olduğundan polinomlar toplama işlemine göre kapalıdır.

1. Polinomlar kümesi toplama işlemine göre kapalıdır.
2. Polinomlar kümesinde toplama işleminin değişme özelliği vardır.
3. Polinomlar kümesinde toplama işleminin birleşme özelliği vardır.
4. Sıfır polinomu polinomlar kümesinde toplama işlemine göre birim elemanıdır.
5. Her polinomun toplama işlemine göre tersi vardır.


İki Polinomun Farkı

P(x) ve Q(x) polinomları için P(x) – Q(x) = P(x) + (-Q(x)) tir.
P(x) – Q(x) polinomuna P(x) polinomu ile Q(x) polinomunun farkı denir.

Örnek
A(x) = 5x4 + x3 – 3x2 + x + 2 ve

B(x) = - 5x4 + x3 + 2x2 + polinomları için A(x) – B(x) farkını bulalım.

Çözüm
B(x) = -5x4 + x3 + 2x2 + ise -B(x) = 5x4 - x3 – 2x2 - dir.
A(x) – B(x) = A(x) + (-B(x))
= (5x4 + x3 – 3x2 + x + 2) + (5x4 - x3 –2x2 - )
= (5 + 5)x4 + ( - )x3 + (-3 –2)x2 + x + (2 - )
= 10x4 – x3 – 5x2 + x - olur.
Bu örnekte görüldüğü gibi iki polinomun farkı da bir polinomdur.
Her A(x) ve B(x) polinomları için A(x) – B(x) ifadesi de polinom olduğundan; polinomlar kümesi çıkarma işlemine göre kapalıdır.

Polinomlarda Çarpma İşlemi

A(x) ve b(x) gibi iki polinomun çarpımı A(x) ‘in her terimi B(x)’in her terimi ile ayrı ayrı çarpılarak bulunur.
anxn ile bkxk teriminin çarpımı
anxn . bkxk = (an . bk) xn+k dir.
Yani (5x3) . (-2x4) = 5 . (-2) x3+4 = -10x7
Bu çarpmaya göre aşağıdaki eşitliği yazabiliriz.
Der [A(x) . B(x) ] = der (A(x)) + der (B(x))

Örnek
A(x) = 3x4 + 1 B(x) = x2 + x
C(x) = x2 – x + 1 polinomları veriliyor.
a) A(x) . B(x)
b) B(x) . C(x) çarpımlarını bulunuz.

Çözüm
a) A(x) . B(x) = (3x4 + 1) . (x2 + x)
= 3x4 . x2 + 3x4 . x + x2 + x
= 3x6 + 3x5 + x2 + x

b) B(x) . C(x) = (x2 + x) . (x2 – x + 1)
= x2 . x2 – x2 . x + x2 . 1 + x . x2 – x . x + x . 1
= x4 – x3 + x2 + x3 – x2 + x + 1
= x4 + x + 1 bulunur.

Polinomlarda çarpma işleminin aşağıdaki özellikleri vardır.

1. Kapalılık (iki polinomun çarpımı yine bir polinomdur.
2. Değişme özelliği vardır.
3. Birleşme özelliği vardır.
4. Çarpma işleminin birim (etkisiz) elemanı P(x) = 1 sabit polinomudur.
5. Polinomlar kümesinde çarpma işlemine göre bazı polinomların tersi yoktur.
Yani P(x) = x2 polinomunun tersi 1/x2 ifadesi polinom değildir.
6. Polinomlar kümesinde çarpma işleminin toplama işlemi üzerine dağılma özelliği vardır.
A(x) . (B(x) + C(x)) = A(x) . B(x) + A(x) . C(x)


Polinomlar Halkası

Toplama ve çarpma işleminin özelliklerinden görüldüğü gibi R[x] polinomlar kümesi;
1. (R[x]+) sistemi değişmeli gruptur.
2. R[x] kümesi çarpma işlemine göre kapalı ve çarpma işleminin birleşme özelliği vardır.
3. R[x] kümesinde çarpma işleminin toplama işlemi üzerinde dağılma özelliği vardır.
O halde (R[x] + . ) sistemi bir halkadır. Buna polinomlar halkası denir.


Polinomlarda Bölme İşlemi

A(x) polinomunun B(x) polinomuna bölümü

A(x) B(x)
 T(x)

.
-___________
R(x)

Burada A(x) = B(x) . T(x) + R(x) şeklinde yazılır.
Bu bölme işlemi yapışırken aşağıdaki hususlara dikkat edilmelidir.

1. Polinomlar azalan kuvvetlerine göre sıralanmalıdır.
2. Bölünen polinomun derecesi bölen polinomun derecesinden büyük olmalıdır.
DerB(x) < derA(x)

3. Kalanın derecesi bölenin derecesinden küçük olmalıdır.
Der R(x) < der B(x)

4. R(x) = 0 ise A(x) polinomu B(x) polinomuna tam bölünüyor denir.
5. der A(x) = der B(x) + der T(x)

der = der A(x) – der B(x) dir.


Örnek
P(x) = x4-2x2 + x 5 polinomunu
Q(x) = x2 + 3x – 1 polinomuna bölelim.

x4 – 2x2 + x + 5 x2 + 3x – 1
_____________ = x2
x2- 3x + 8

± x4 ± 3x3 ± x2 = -3x
-__________________
-3x3 – x2 + x + 5 = 8
±3x3 ± 9x2 ±3x
-_________________
8x2 – 2x + 5
± 8x2 ± 24x ±8
-_________________
- 26x + 13

Bölüm : x2 – 3x + 8
Kalan : -26x + 13


Horner Metodu

Bölen birinci dereceden ya da birinci dereceden polinomların çarpımından oluşuyorsa bu metot uygulanabilir.

Örnek
Px3 + qx2 + nx + s polinomunu (x – a) ‘ ya bölelim.

Çözüm
1. Bölünen polinomun katsayıları x’in azalan kuvvetlerine göre sıralanır.
2. Bölümün derecesi bölünenin derecesinden küçük olacağı için bölümde x3’ün katsayısı 0 olur.
3. p katsayısı aşağıya aynen yazılır.
4. a p ile çarpılır q’nun altına yazılarak toplanır. Ap + q olarak yazılır.

Bu işleme kalan bulunana kadar devam edilir.
px3 + qx2 + rx + s x – a = 0 ise x = a

Örnek
P(x) = x4 – x3 + 3x + 4 polinomunun x – 2’ye bölündüğünde bölüm ve kalanı horner metodu yardımıyla bulunuz.

Çözüm
P(x)’in katsayılarını belirleyip tabloda gösterelim. Ayrıca x –2 = 0  x = 2 ‘yi yerine yazalım.

Bölümün Katsayıları Kalan



-1 0 3 4
2 1 2 2 4 14
1 1 2 7 18

Bölümün Katsayıları Kalan

Bölüm B(x) = x3 + x2 + 2x + 7
Kalan R(x) = 18 bulunur.




Bölme İşlemi Yapmadan Kalan Bulma

Bir P(x) Polinomunun x – a ile Bölünmesinde Elde Edilen Kalan
Bir P(x) polinomunun (x – a) ile bölünmesinden elde edilecek bölüm Q(x) ve kalan k olsun. (x – a) birinci dereceden olduğundan kalan sabit bir sayıdır. P(x) = (x – a) Q (x) + k eşitliği her x için geçerlidir. Burada x yerine a yazarsak P(a) = 0.Q(a) + k  P(a) = k bulunur.

Bir P(x) polinomunun (x – a) ile bölünmesinden elde edilen kalan P(x) ya eşittir. O halde bir polinomun (x – a) ile bölünmesinden kalanı bulmak için (x – a = 0  x = a olur.) polinomda x yerine a değeri yazılır.

Örnek
P(x) = x2 – 3x + 21 polinomunun (x – 2) ile bölünmesinden elde edilen kalanı bulunuz.

Çözüm
X – 2 = 0  x = 2 dir. Bulacağımız kalan P(2) olacaktır. Öyleyse P(2) = 22 – 3 . 2 + 21 = 19 olur.

Bir P(x) Polinomunun ax + b ile Bölünmesinden Elde Edilen Kalan
Bölen birinci dereceden olduğundan kalan yine sabit olur. Bölen olarak (ax + b) polinomunu alalım. Bu durumda P(x) = (ax + b) Q (x) + k yazılır.
Ax + b = 0  x = olur. Polinomda x yerine yazılırsa P( ) = k bulunur. O halde bir P(x) polinomunun (ax + b) ile bölünmesinden kalanı bulmak için polinomda x yerine yazılır.

Örnek
P(x) = x3 – 4x + 1 polinomunun 2x – 1 ile bölünmesinden kalanı bulunuz.

Çözüm
P ( ) = - 4. + 1 = - 2 + 1 = olur.

Bir P(x) Polinomunun x2 + a x3 + a x4 + a ile Bölünmesinden Elde Edilen Kalan
P(x) polinomunun x2 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x2 yerine –a yazılır.
P(x) polinomunun x3 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x3 yerine –a yazılır.
P(x) polinomunun x4 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x4 yerine –a yazılır.

Örnek
P(x) = x4 – x3 + x2 + 7x –1 polinomunun x2 + 2 ile bölünmesinden kalanı bulunuz.

Çözüm
İstenen kalanı bulmak için (x2 + 2 = 0  x2 = -2) polinomda x2 yerine –2 yazarız.
P(x) = x2 . x2 – x2 . x + x2 + 7x – 1 olur.
Kalan : (-2) ( -2) – (-2) . x – 2 + 7x – 1 = 4 + 2x + 7x – 3 = 9x + 1 bulunur.

Bir Polinomun (x – a) (x – b) ile Bölünmesinden Elde Edilen Bölüm ve Kalan
Bir P(x) polinomunun (x – a) . (x – b) ile bölünmesini Horner yöntemi ile yapabiliriz. Verilen P(x) polinomu önce (x – a) ile bölünür sonra elde edilen bölüm (x – b) ile bölünür.

Örnek
Bir P(x) polinomunun (x + 3) (x – 2) ile bölünmesinden kalanı bulunuz.

Çözüm
(x + 3) (x – 2) polinomu 2. dereceden olduğuna göre kalan polinom en fazla 1. derecedendir. Kalan polinom K(x) = ax + b biçimindedir. Bölüm özdeşliği yazılırsa
P(x) = (x + 3) (x – 2) B(x) + ax + b biçiminde olur.
P(-3) = -5 ve P(2) = 4 olduğu veriliyor.
P(-3) = (-3 + 3) (-3 –2) . B (-3) –3a +b  P(-3) = -3a + b
P(2) = (2 + 3) (2 – 2) . B(2) + ‘a +b  P(2) = 2a +b olur.

-3a + b = -5
2a + b = 4
denklem sistemi çözülürse a = ve b = olur. Buradan K(x) = x + bulunur.

Örnek
Bir P(x) polinomunun x2 + 2 ile bölünmesinden kalan –2x + 6 ve P(x) polinomunun kat sayıları toplamı 7 ise bu P(x) polinomunun (x2 + 2) (x – 1) ile bölünmesinden kalanı bulunuz.

Çözüm
Bir P(x) polinomunun kat sayıları toplamını bulmak için polinomda x yerine 1 yazılır. P(1) verilen polinomun kat sayıları toplamıdır. Burada P(1) = 7 veriliyor. Diğer taraftan kalan en fazla 2. dereceden ax2 + bx + c biçiminde olur. Bölmenin özdeşliği yazılırsa;
P(x) = (x2 + 2) (x – 1) b(x) + ax2 + bx + c olur. Polinomda
x = 1 için P(19 = (1 + 2) . (1 – 1) . B(1) + a + b + c = a + b + c = 7 ve
x2 = -2 yazılırsa -2a + bx + c = - 2x + 6 olur.
bx + c – 2a = -2x + 6  b = -2 ve c-2a = 6 olur. Ayrıca b = -2 ise a + b + c = 7 den
a – 2 + c = 7  a + c = 9 dur.
c - 2a = 6
a + c = 9
Sistemi çözülürse a = 1 c = 8 bulunur. Oyleyse K(x) = x2 – 2x + 8 olur.



Benzer Konular:

___----____
__________________
Yediğin içtiğin senin olsun kardaş
Ahiret için neler yapıyorsun onlardan bahset ...
Hâdim isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 02-12-2007, 07:54 PM   #2 (permalink)
Profesyonel

 
ÇaLıKuŞu - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Aug 2007
Bulunduğu yer: --------
Mesajlar: 11.152
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 619
Rep Puanı: 8854
Rep Derecesi:
ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.ÇaLıKuŞu Çok ünlü.
Standart

..........yorumsuz......teşekkürler



ÇaLıKuŞu isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 02-12-2007, 07:57 PM   #3 (permalink)
| C¤ | TürkiyéM | C¤ |

 
Ahu-i Felek - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Oct 2007
Bulunduğu yer: Cehennemin dibi! gelcen mi?
Yaş: 21
Mesajlar: 17.547
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 825
Rep Puanı: 8487
Rep Derecesi:
Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.
Standart

bu konuyu işledik ama tşkler işime yarayabilir..



Ahu-i Felek isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 02-12-2007, 08:12 PM   #4 (permalink)
Profesyonel

 
sseeyyddaa - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Oct 2007
Bulunduğu yer: AnkArA
Mesajlar: 5.324
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 328
Rep Puanı: 2258
Rep Derecesi:
sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.sseeyyddaa Çok ünlü.
Standart

bu konuyu çıkaranı ...


hiçbişi yapamıyorum yaa bunların yüzünden matematik sınavım sonuçlandı



__________________
sseeyyddaa isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 02-12-2007, 08:15 PM   #5 (permalink)
Deneyimli

 
Üyelik Bilgileri
Üyelik tarihi: Nov 2007
Bulunduğu yer: bilmiyorum valla :)
Mesajlar: 607
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 144
Rep Puanı: 441
Rep Derecesi:
√K∂я∂¶U$U™ Gerçekten çok hoş.√K∂я∂¶U$U™ Gerçekten çok hoş.√K∂я∂¶U$U™ Gerçekten çok hoş.√K∂я∂¶U$U™ Gerçekten çok hoş.√K∂я∂¶U$U™ Gerçekten çok hoş.
Standart

bir ara bu konu benim için işkenceye dönüşmüştü



__________________
ÖZEL MESAJ ATMAYIN....
√K∂я∂¶U$U™ isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 22-01-2008, 06:30 PM   #6 (permalink)
Çaylak
 
Üyelik Bilgileri
Üyelik tarihi: Jan 2008
Yaş: 24
Mesajlar: 1
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 0
Rep Puanı: 1
Rep Derecesi:
mest_44 Bu noktada bilinmeyen bir miktar.
Standart

teşekürler



mest_44 isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 22-01-2008, 07:33 PM   #7 (permalink)
| C¤ | TürkiyéM | C¤ |

 
Ahu-i Felek - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Oct 2007
Bulunduğu yer: Cehennemin dibi! gelcen mi?
Yaş: 21
Mesajlar: 17.547
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 825
Rep Puanı: 8487
Rep Derecesi:
Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.Ahu-i Felek Çok ünlü.
Standart

benim polinomlarım iyidir ya severim polinomları



__________________
...
Ahu-i Felek isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 08-10-2008, 10:21 PM   #8 (permalink)
Çaylak
 
Üyelik Bilgileri
Üyelik tarihi: Oct 2008
Yaş: 25
Mesajlar: 1
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 0
Rep Puanı: 1
Rep Derecesi:
dale Bu noktada bilinmeyen bir miktar.
Standart

polinomlarla ilgili 20 tane çözümlü örnek lazım lınk verirmisiniz acaba



dale isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 09-10-2008, 07:43 PM   #9 (permalink)
Çaylak
 
büşra_2002 - ait Kullanıcı Resmi (Avatar)
 
Üyelik Bilgileri
Üyelik tarihi: Oct 2008
Yaş: 22
Mesajlar: 26
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 0
Rep Puanı: 1
Rep Derecesi:
büşra_2002 Bu noktada bilinmeyen bir miktar.
Standart

çok sağol



büşra_2002 isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Alt 12-11-2008, 10:30 PM   #10 (permalink)
Çaylak
 
Üyelik Bilgileri
Üyelik tarihi: Nov 2008
Mesajlar: 1
Bahsedildi: 0 mesajda
Davet edildi: 0 konuda
Rep Durumu
Tecrübe Puanı: 0
Rep Puanı: 1
Rep Derecesi:
whely Bu noktada bilinmeyen bir miktar.
Aşık2

ya bn bunları biliorum bilmediklerim war sandım ama tekrar için ii saolunnn



whely isimli Üye şimdilik offline konumundadır   Alıntı ile Cevapla
Cevapla

Bookmarks

Etiketler
anlatim, cozumlu, konu, ornekler, polinomlar


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık



WEZ Format +3. Şuan Saat: 12:24 PM.
"5651 Sayılı Kanun'un 8.Maddesine ve T.C.K'nın 125. Maddesine göre Forumumuzdaki Üyelerimiz, yaptıkları paylaşımlardan sorumludur. Forumumuzda bulunan bir içeriğin, kanunlara aykırı olduğunu veya yanıltıcı olduğunu düşünüyorsanız lütfen buradan ( kemalyanal@yahoo.com ) bize bildirin."
Protected by CBACK.de CrackerTracker

Add to Google Suchmaschinenoptimierung mit Ranking-Hits Add to Google
| Tags | Gizlilik Bildirimi | dC| Death Chasers Klan | Link Ekle | Sitemap | Link Ekle | GençMekan |

Search Engine Optimization by vBSEO 3.3.0